a2 United States Patent

Xin et al.

US009083976B2

(10) Patent No.: US 9,083,976 B2
(45) Date of Patent: Jul. 14, 2015

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(63)

(60)

(1)

(52)

PROCESSING A VIDEO STREAM IN REAL
TIME BASED ON BINARY INFORMATION
OF THE VIDEO STREAM

Applicant: Freescale Semiconductor, Inc., Austin,
TX (US)

Inventors: Jun Xin, Mountain View, CA (US);
Behzad R. Sayyah, Emerald Hills, CA
(US); William Ka-ming Chan,
Cupertino, CA (US)

Assignee: FREESCALE SEMICONDUCTOR,
INC., Austin, TX (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 83 days.

Appl. No.: 13/835,158
Filed: Mar. 15,2013
Prior Publication Data

US 2013/0202028 A1 Aug. 8, 2013

Related U.S. Application Data

Continuation-in-part of application No. 12/553,228,
filed on Sep. 3, 2009, now Pat. No. 8,767,838.

Provisional application No. 61/094,783, filed on Sep.
5, 2008.

Int. Cl1.

HO4N 19/40 (2014.01)

HO4N 19/15 (2014.01)

HO4N 19/44 (2014.01)

HO4N 19/70 (2014.01)

HO4N 19/423 (2014.01)

U.S. CL

CPC HO4N 19/40 (2014.11); HO4N 19/00187

(2013.01); HO4N 19/44 (2014.11); HOAN
19/423 (2014.11); HO4N 19/70 (2014.11)

Third Transcoder (Optional) 150 |

Third Decoder 182«

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,719,632 A * 2/1998 Hoangetal. 375/240.05
7,024,102 B1* 4/2006 Inoshitaetal. 386/208
7,061,410 Bl 6/2006 Pearson et al.

7,236,526 Bl 6/2007 Kitamura

(Continued)
OTHER PUBLICATIONS

United States Office Action, U.S. Appl. No. 12/553,228, Sep. 12,
2013, 21 pages.

(Continued)

Primary Examiner — Ayaz Sheikh
Assistant Examiner — Peter Chau

(57) ABSTRACT

A system (and a method) are disclosed for a video processing
system with enhanced entropy coding performance. The sys-
tem includes an entropy decoder configured to divide decod-
ing of an input video stream into arithmetic decoding and
syntax decoding. The entropy decoder includes an arithmetic
decoding module, a syntax decoding module, a memory man-
agement module and a memory buffer connecting the two
decoding modules. The arithmetic decoding module is con-
figured to decode the input video stream into multiple bins of
decoded input video stream and the syntax decoding module
is configured to decode the bins of arithmetically decoded
input videos stream into one or more syntax elements. The
memory management module uses the memory buffer to
accelerate the coding performances of arithmetic decoding
and syntax decoding. The system also includes a correspond-
ing entropy encoder configured to encode a video stream with
improved coding performance.

20 Claims, 11 Drawing Sheets

Second wisbream 347

P

US 9,083,976 B2

Page 2
(56) References Cited 2008/0013627 Al 1/2008 Tahara et al.
2008/0043839 Al 2/2008 Kitamura
U.S. PATENT DOCUMENTS 2008/0232464 Al 9/2008 Tahara et al.

2009/0058691 Al™* 3/2009 KOO ..ccoovvvvvvireerieiieninnnn. 341/51
2002/0059643 Al 5/2002 Kitamura et al. 2009/0058695 Al* 3/2009 Baoetal.cccoovvnenne 341/107
2003/0016755 Al 1/2003 Tahara et al. 2009/0115866 Al* 5/2009 Niida 348/222.1
2003/0128292 Al 7/2003 Kitamura et al. 2009/0279417 Al* 11/2009 Terui 369/284
2003/0128766 Al 7/2003 Tahara et al. 2011/0001643 Al* 1/2011 Szeetal.ccccevvvvvnnnnen 341/87
2004/0179619 Al* 9/2004 Tian et al. ..oovovovv.nn. 375/240.26 2011/0228858 Al* 9/2011 Budagavi et al. . 375/240.25
2005/0147172 Al 7/2005 Winger et al. 2012/0027086 Al* 2/2012 Mochizuki 375/240.12
2005/0147173 Al 7/2005 Winger et al. 2012/0163449 Al* 6/2012 Kotaka 375/240.03
2006/0209965 Al* 9/2006 Tseng 375/240.25 2012/0300839 Al* 112012 Szeetal. 375/240.12
2006/0280371 Al* 12/2006 Shimazaki etal. 382/239
2006/0291570 Al 12/2006 Kitamura et al. OTHER PUBLICATIONS
%88;;82’;232% ﬁ} 1%%88; i?iilnitlfi United States Office Action, U.S. Appl. No. 12/553,228, Jul. 30,
2007/0263719 Al 11/2007 Tahara et al. 2012, 21 pages.
2008/0008237 Al 1/2008 Tahara et al. United States Office Action, U.S. Appl. No. 12/553,228, Feb. 29,
2008/0012738 Al™* 1/2008 Sekietal.cccoevvnrnnnn.. 341/51 2012, 22 pages.
2008/0013625 Al 1/2008 Tahara et al.
2008/0013626 Al 1/2008 Tahara et al. * cited by examiner

U.S. Patent Jul. 14, 2015 Sheet 1 of 11 US 9,083,976 B2

Input video stream 110

———

§'First Transcoder 12

First Decoder 122

kd

Picture Processing 124

¥

First Encoder 126 | |

First bitstream 127

|

... |
Second Transcoder 14 ' :

.
]
1
'
1
1
]
]
|
]
]
]

Second Decoder 142

¥

Picture Processing 144 !

v Second bitstream 147

Second Encoder 146

[T S

g'Third Transcoder (Optional) 150

Third Decoder 152 gt

%

Picture Processing _154

¥

Third Encoder 156

Transcoded video stream 160 Figure 1

U.S. Patent Jul. 14, 2015 Sheet 2 of 11 US 9,083,976 B2
202 ~
4 218 PROCESSOR
DISPLAY 400
- 204
CHIPSET
ek - -
212 {220 - 206
- A |)
i |
§ |
| MEMORY -
GRAPHICS ' -
ADAPTER ; CONTROLLER ; MEMORY
; HUB :
i |
i |
§ |
§ |
{ |
S |
222 ! 216
e | -
5 Vo i NETWORK
STORAGE ; CONTROLLER ! ADAPTER
DEVICE : HUB |
208 ; :
{ |
} |
§ |

KEYBOARD
POINTING DEVICE

Figure 2

U.S. Patent Jul. 14, 2015 Sheet 3 of 11 US 9,083,976 B2

(#%]
(e]
<

Compressed H.264 CABAC stream
310

{First Transcoder 320

CABAC Decoder 322

Picture Processing 324

s ¢ CAVLC stream 327

CAVLC encoder 326 §
Memory 206A

{Second Transcoder 33
; CAVLC Decoder 332 :
3 §
Picture Processing 334
¥ } CAVLC stream 337
CAVLC encoder 336 : :

e \

Third Transcoder 340 :

CAVLC Decoder 342

¥

Picture Processing 344

¥

CABAC encoder 346

e e

Transcoded H.264 CABAC stream 350 Figure 3

U.S. Patent Jul. 14, 2015 Sheet 4 of 11 US 9,083,976 B2

N
L]

— Compressed H.264 CABAC stream 410

'First Transcoder 420

| CABAG Decoder 422 §

Picture Processing 424

I s CAVLC stream 427
CAVLC encoder 426 v I é

'Second Transcoder 430

CAVLC Decoder 432

Picture Processing 434

MPEG-2 video entropy
encoder 436

Semm—m— i ——

..

Transcoded MPEG-2 video stream 440

Figure 4

U.S. Patent Jul. 14, 2015 Sheet 5 of 11 US 9,083,976 B2

(8]
(-]
{aw]

Compressed MPEG-2 video stream
510

§'First Transcoder 520

MPEG-2 video entropy
decoder 522 :

Picture Processing 524

s ' CAVLC stream 527
: CAVLC encoder 526 .

-

{ Second Transcoder 530

: CAVLC Decoder 532 oo

%7

Picture Processing 534

% i

: CABAC encoder 536

Transcoded H.264 CABAC stream 540 §

Figure 5

U.S. Patent Jul. 14, 2015 Sheet 6 of 11 US 9,083,976 B2

D
(]
(e

Compressed H.264 CABAC stream
610

{First Transcoder 620

| L :

| CABAC Decoder 622 |

Picture Processing 624

i . | | CAVLC stream 627
CAVLC encoder §26 - b :

;"Second Transcoder 63

CAVLC Decoder 632

Picture Processing 634

%

CAVLC encoder 636

Transcoded CAVLC stream 640

Figure 6

U.S. Patent Jul. 14, 2015 Sheet 7 of 11 US 9,083,976 B2

\‘
low]
O

Compressed CAVLC stream 71

...

g/First Transcoder 720

CAVLC decoder 722

Picture Processing 724

¥

§ CAVLC stream 727
i CAVLC encoder 726 oo

’

Second Transcoder 730

CAVLC Decoder 732

¥

Picture Processing 734

¥

CABAC encoder 736

Semmmm e

Transcoded H.264 CABAC stream 740

Figure 7

U.S. Patent

Jul. 14, 2015 Sheet 8 of 11

Start

'

Receive input video stream
810

) 4

Transcode the input video stream into a first
bitstream in a first video format
820

Y

Receive the first bitstream in the first video
format
830

Transcode the first bitstream into a second
bitstream in a second video format
840

US 9,083,976 B2

/

Receive the second bitstream in the second
video format (optional)
850

) J

. Transcode the second bitstream into a third

bitstream in a third video format (optional)
860

A

QOutput the transcoded bitstream
870

End

Figure 8

U.S. Patent Jul. 14, 2015 Sheet 9 of 11 US 9,083,976 B2

900 Input Video Stream
910
___ S,

-
7
1

Entropy Decoder 92

Arithmetic Decoding Module
922

Memory Management Module %
924 |

Memory Buffer
928

i
i
i
i
1
1
1
1
1
1
1
1
1 b
1
'
t
~

Syntax Decoding Module : |
926 |

{ Entropy Encoder 930 ‘E
Syntax Encoding Module | .
| 932 |
Memory Manggzment Module qﬁ Memory Buffer
E =23 | 938 :
Arithmetic Encoding Module =

H
Output Video Stream
940

Figure 9

U.S. Patent Jul. 14, 2015 Sheet 10 of 11 US 9,083,976 B2

1000
CABAC Bit Siream Syniax Elements
1002 1004
W h
Arithmetic Decoding Syntax Decoding
1010 1030

Decoding Buffer
Input Bins 1020 Qutput Bins
1012 1014

Figure 10

U.S. Patent Jul. 14, 2015 Sheet 11 of 11 US 9,083,976 B2

Receive an input video stream
1102

Y

Initialize a decoding buffer
1104

) 4

Arithmetically decode the input video stream
1106

v

Store the arithmetically decoded video stream
1108

| 4

Monitor buffer fullness
1110

T Buffer fullness T ;
< > i et e et e ;
.. Threshold? "

. YES
Y
Decode the arithmetically decoded video
stream into syntax elements
1112

\
End

Figure 11

US 9,083,976 B2

1
PROCESSING A VIDEO STREAM IN REAL
TIME BASED ON BINARY INFORMATION
OF THE VIDEO STREAM

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation-in-part of co-pending
U.S. application Ser. No. 12/553,228, filed Sep. 3, 2009,
which claims priority to U.S. Provisional Patent Application
No. 61/094,783, filed on Sep. 5, 2008, entitled “Efficient Intra
Frames Video Coding,” all of which are incorporated by ref-
erence in their entirety.

BACKGROUND

1. Field of Art

The disclosure generally relates to video compression, and
more particularly, to cascading of multiple video transcoders
in a video processing system.

2. Description of the Related Art

H.264 video coding standard includes several algorithmic
improvements for hybrid motion compensated and discrete
cosine transform (DCT) based video codecs. One aspect of
the improvements is entropy coding. Entropy coding is a
lossless compression technique. Typically, entropy encoders
are used to compress data by assigning codes to each data
symbol such that the most common symbols use the shortest
codes. Efficient entropy coding is important for the overall
coding performance of a video codec.

Entropy encoding is an example of lossless encoding that
makes uses of the redundancy of video signals. Natural video
signals show non-stationary statistical behavior. The statistics
of these signals largely depend on the video content. Tradi-
tional video coding schemes rely on a mapping from the video
signals to a bitstream of variable length-coded syntax ele-
ments, such as block types, motion vectors and quantized
coefficients. The traditional video coding schemes exploit
some of the non-stationary characteristics but not all of them.
For example, entropy encoding in hybrid block-based video
coding standards, such as MPEG-2, H.263 and MPEG-4, is
generally based on fixed tables of variable length codes
(VLO).

For transmitting quantized transform coefficients of video
signals, a more efficient method called Context-Adaptive
Variable Length Coding (CAVLC) is employed in H.264
video coding standard. In this scheme, VLC tables for various
syntax elements are switched depending on already transmit-
ted syntax elements. Since the VLC tables are designed to
match the corresponding conditional statistics, the entropy
coding performance is improved in comparison to schemes
using a single fixed VL.C table.

The efficiency of entropy coding can be improved further if
Context-Adaptive Binary Arithmetic Coding (CABAC) is
used. The CABAC design is based on the key elements of
binarization, context modeling and binary arithmetic coding.
The usage of arithmetic coding and adaptive codes permits
CABAC adaptation to non-stationary symbol statistics. The
context modeling is applied to a binary sequence of the syn-
tactical elements of the video data, such as block types,
motion vectors, and quantized coefficients. The context mod-
eling of CABAC allows already coded syntax elements to be
used to estimate conditional probabilities and the conditional
probabilities are used for switching several estimated prob-
ability models to improve entropy coding efficiency.

For some applications, however, the computational
requirements of CABAC may be too high given today’s sili-

10

15

20

25

30

35

40

45

50

55

60

65

2

con technology. Therefore, H.264 coding standards specifies
two alternative methods of entropy coding: a low-complexity
technique based on the usage of CAVL.C, and the computa-
tionally more demanding algorithm of CABAC.

MPEG standards introduced three frame types for video
coding: intra frame (I frame), predicted frame (P frame) and
bidirectional predicted frame (B frame). The different types
of frames are organized together into a group of pictures
(GOP). A GOP is the smallest random access unit in a video
sequence. | and P frames are sometimes called anchor frames
used for motion-compensated prediction in a group of pic-
tures. B frames are predicted using anchor frames (e.g., I or P
frames), and are not used to predict anchor frames. However,
intra frames do not use temporal correlation for prediction,
the compression rate of intra frames are usually low com-
pared to P or B frames that make use of temporal correlation
for prediction. In addition, to support random access, there
are frequent I frames in a video sequence and it is typical to
have two I frames per second. For example, for a compressed
H.264 bitstream at bit rate of 9 Mbps, up to 4 Mbps may have
been used for encoding intra frames.

CABAC offers higher compression efficiency than
CAVLC at the expense of much higher computational com-
plexity. Since CABAC encoding/decoding time for a picture
is proportional to the number of bits it produces/receives, it
uses more time for bigger pictures, typically I pictures, and
less time for smaller pictures typically P and B pictures. For
some applications, it is hard or even impossible with today’s
silicon technology to CABAC encode/decode a large picture
in real time. On the other hand, in a typical video processing
system, e.g. a video transcoder, the processing speed of other
parts of the system, e.g., motion estimation, transform, intra
prediction etc., do not depend on the picture size. Therefore
CABAC encoding/decoding typically is very slow for large
pictures, primarily I pictures, so that the video processing for
such large picture becomes slow as well. For smaller pictures,
primarily P and B pictures, CABAC runs faster than the other
video processing components. However, the processing
speed in this latter case is determined by other video process-
ing components, not by CABAC. Therefore, in an H.264
video processing system, CABAC encoding/decoding speed
for large pictures can become a performance bottleneck.

BRIEF DESCRIPTION OF DRAWINGS

The disclosed embodiments have other advantages and
features which will be more readily apparent from the
detailed description, the appended claims, and the accompa-
nying figures (or drawings). A brief introduction of the figures
is below.

FIG. 1 is ahigh-level diagram illustrating a pipelined video
processing configuration of a video processing system
according to one embodiment.

FIG. 2 is a high-level block diagram of a computer for
acting as a video encoder, a video decoder, or a picture pro-
cessing unit according to one embodiment.

FIG. 3 is an example of the video processing system illus-
trated in FIG. 1 for transcoding a compressed H.264 CABAC
stream into another H.264 CABAC stream by pipelining three
transcoders.

FIG. 4 is an example of the video processing system illus-
trated in FIG. 1 for transcoding a compressed H.264 CABAC
stream into a MPEG-2 video stream by pipelining two
transcoders.

US 9,083,976 B2

3

FIG. 5 is an example of the video processing system illus-
trated in FIG. 1 for transcoding a compressed MPEG-2 video
stream into a H.264 CABAC stream by pipelining two
transcoders.

FIG. 6 is an example of the video processing system illus-
trated in FIG. 1 for transcoding a compressed H.264 CABAC
stream into a CAVLC video stream by pipelining two
transcoders.

FIG. 7 is an example of the video processing system illus-
trated in FIG. 1 for transcoding a compressed CAVLC video
stream into a H.264 CABAC stream by pipelining two
transcoders.

FIG. 8 is a flow chart illustrating steps performed by the
video processing system to transcode a compressed video
stream by pipelining multiple transcoders according to one
embodiment.

FIG. 9 is an example of the video processing system with
an enhanced entropy decoder and an enhanced entropy
encoder according to one embodiment.

FIG. 10 is an example of the enhanced entropy decoder
with a decoding buffer to accelerate the performances of
arithmetic decoding and syntax decoding according to one
embodiment.

FIG. 11 is a flow chart illustrating steps performed by an
enhanced entropy decoder illustrated in FIG. 9 according to
one embodiment.

The figures depict an embodiment for purposes of illustra-
tion only. One skilled in the art will readily recognize from the
following description that alternative embodiments of the
structures and methods illustrated herein may be employed
without departing from the principles described herein.

DETAILED DESCRIPTION

The Figures and the following description relate to pre-
ferred embodiments by way of illustration only. It should be
noted that from the following discussion, alternative embodi-
ments of the structures and methods disclosed herein will be
readily recognized as viable alternatives that may be
employed without departing from the principles of what is
claimed.

Reference will now be made in detail to several embodi-
ments, examples of which are illustrated in the accompanying
figures. It is noted that wherever practicable similar or like
reference numbers may be used in the figures and may indi-
cate similar or like functionality. The figures depict embodi-
ments of the disclosed system (or method) for purposes of
illustration only. One skilled in the art will readily recognize
from the following description that alternative embodiments
of the structures and methods illustrated herein may be
employed without departing from the principles described
herein.

Pipelined Video Processing Configuration

One embodiment of a disclosed system (and a method)
includes a plurality of video transcoders cascaded with each
other in a video processing system. A first transcoder is con-
figured to transcode an input video stream in its native video
format into a first bitstream in a first video format. A second
transcoder is configured to transcode the first bitstream in the
first video format into a second bitstream in a second video
format, and optionally a third transcoder is configured to
transcode the second bitstream in the second video format
into a third bitstream in a third video format. The disclosed
system not only speeds up the overall entropy coding perfor-
mance of the video processing system, but also allows higher
throughput of coding processing.

10

15

20

25

30

35

40

45

50

55

60

65

4

Another embodiment of the disclosed system with
enhanced entropy coding includes an entropy decoder con-
figured to divide decoding of an input video stream into
arithmetic decoding and syntax decoding. The entropy
decoder includes an arithmetic decoding module, a syntax
decoding module, a memory management module and a
memory buffer connecting the two decoding modules. The
arithmetic decoding module is configured to decode the input
video stream into multiple bins of decoded input video stream
and the syntax decoding module is configured to decode the
bins of arithmetically decoded input videos stream into one or
more syntax elements. The memory management module
uses the memory buffer to accelerate the coding perfor-
mances of arithmetic decoding and syntax decoding. The
system also includes a corresponding entropy encoder con-
figured to encode a video stream with improved coding per-
formance.

FIG. 1 is ahigh-level diagram illustrating a pipelined video
processing configuration of a video processing system 100
according to one embodiment. Generally, the video process-
ing system 100 comprises a first transcoder 120, a second
transcoder 140 and an optional third transcoder 150. The first
transcoder 120 couples the second transcoder 140, which
couples the optional third transcoder 150. The first transcoder
120 is a pre-processing transcoder configured to preprocess
an input video stream 110 into a first video stream (also called
afirst bitstream) in a first video format. The second transcoder
140 is a primary transcoder configured to transcode the first
bitstream pre-processed by the first transcoder 120 into a
second bitstream in a second video format. Pre-processing the
input video stream 110 by the first transcoder 120 allows the
second transcoder 140 to more efficiently and quickly
transcode the input video stream 110 into the second bit-
stream in the second video format.

As noted, the video processing system 100 optionally
includes a third transcoder 150. The third transcoder 150
comprises a post-processing transcoder that is configured to
further transcode the second bitstream processed by the sec-
ond transcoder 140 into a third bitstream in a third video
format. Post-processing the video stream from the second
transcoder 140 further improves processing efficiency and
speed and also increases throughout of coding processing.

Referring back more specifically to the first transcoder 120,
it comprises a first decoder 122 configured to decode the input
video stream 110 in its native video format, a picture process-
ing unit 124 configured to process the decoded input video
stream 110, and a first encoder 126 configured to encode the
processed input video stream 110 into a first bitstream 127 in
a first video format. The second transcoder 140 comprises a
second decoder 142 configured to decode the first bitstream
127 in the first video format, a picture processing unit 144
configured to process the decoded first bitstream 127, and a
second encoder 146 configured to encode the processed first
bitstream 127 into a second bitstream 147 in a second video
format. The second decoder 142 of the second transcoder 140
is a corresponding decoder of the first encoder 126 of the first
transcoder 120.

The third transcoder 150 comprises a third decoder 152
configured to decode the second bitstream 147 in the second
video format, a picture processing unit 154 configured to
process the decoded second bitstream 147, and a third
encoder 156 configured to encode the processed second bit-
stream 147 into a transcoded video stream 160. The third
decoder 152 of the third transcoder 150 is a corresponding
decoder of the second encoder 146 of the second transcoder
140.

US 9,083,976 B2

5

The video processing system 100 also comprise one or
more data storage units, such as memory 206A-B. The
memory 206 is, for example, any computer-readable/writable
storage medium, such as a random access memory (RAM),
hard drive, writable DVD, or a solid-state memory device.
The memory holds instructions and data used by the encod-
ers, decoders or the picture processing units of the video
processing system 100. For example, in one embodiment, the
first transcoder 120 stores the first bitstream 127 encoded by
the first encoder 126 in the memory 206A. The second
transcoder 140 retrieves the first bitstream 127 from the
memory 206 A and generates the second bitstream 147. Simi-
larly, the second transcoder 140 stores the second bitstream
147 encoded by the second encoder 146 in the memory 206B.
The third decoder 152 retrieves the second bitstream 147
from the memory 206B and further processes the second
bitstream 147.

Although the transcoders (120, 140 and 150) are shown in
FIG. 1 as three individual transcoders for ease of discussion
and understanding, but is not intended to be so limiting. For
example, an alternative embodiment may comprise one con-
figurable transcoder running on the video processing system
100. The configurable transcoder may be located in one
physical chipset and is configured to first perform the func-
tionality of the first transcoder 120, and is further configured
to perform the functionalities of the second transcoder 140
and the optional third transcoder 150 during the different
phases of transcoding the input stream 110. It is noted that the
example configurations discussed herein could be similarly
configured.

An Exemplary Computing System for the Video Processing
System

FIG. 2 is a high-level block diagram of a computer 200 for
acting as the various decoders (122, 142 or 152), the various
encoders (126, 146 or 156) or the various processing units
(124,144 or 154) of the video processing system 100 accord-
ing to one embodiment. [llustrated are at least one processor
202 coupled to a chipset 204. Also coupled to the chipset 204
are the memory 206, a storage device 208, a keyboard 210, a
graphics adapter 212, a pointing device 214, and a network
adapter 216. A display 218 is coupled to the graphics adapter
212. In one embodiment, the functionality of the chipset 204
is provided by a memory controller hub 220 and an [/O
controller hub 222. In another embodiment, the memory 206
is coupled directly to the processor 202 instead of the chipset
204.

The storage device 208 is any computer-readable storage
medium, such as a hard drive, compact disk read-only
memory (CD-ROM), DVD, or a solid-state memory device.
The memory 206 holds instructions and data used by the
processor 202. The pointing device 214 may be a mouse,
track ball, or other type of pointing device, and is used in
combination with the keyboard 210 to input data into the
computer system 200. The graphics adapter 212 displays
images and other information on the display 218. The net-
work adapter 216 couples the computer system 200 to the
network 120.

As is known in the art, a computer 200 can have different
and/or other components than those shown in FIG. 2. In
addition, the computer 200 can lack certain illustrated com-
ponents. In one embodiment, a computer 200 acting as a
reputation server 140 can lack a keyboard 210, pointing
device 214, graphics adapter 212, and/or display 218. More-
over, the storage device 208 can be local and/or remote from
the computer 200 (such as embodied within a storage area
network (SAN)).

10

15

20

25

30

35

40

45

50

55

60

65

6

As is known in the art, the computer 200 is adapted to
execute computer program modules for providing function-
ality described herein. As used herein, the term “module”
refers to computer program logic utilized to provide the speci-
fied functionality. Thus, a module can be implemented in
hardware, firmware, and/or software. In one embodiment,
program modules are stored on the storage device 208, loaded
into the memory 206, and executed by the processor 202.

Embodiments of the entities described herein can include
other and/or different modules than the ones described here.
In addition, the functionality attributed to the modules can be
performed by other or different modules in other embodi-
ments. Moreover, this description occasionally omits the term
“module” for purposes of clarity and convenience.

Example Video Processing System Configurations

FIG. 3 is an example of the video processing system 100
illustrated in FIG. 1 for transcoding a compressed H.264
CABAC stream 310 into another H.264 CABAC stream 350
by pipelining three transcoders. The exemplary video pro-
cessing system in FIG. 3 comprises a first transcoder 320, a
second transcoder 330 and a third transcoder 340. The first
transcoder 320 couples the second transcoder 330, which
couples the third transcoder 340. The first transcoder 320 is a
pre-processing transcoder configured to preprocess the com-
pressed H.264 CABAC stream 310 into a CAVLC stream
327. The second transcoder 330 is a primary transcoder con-
figured to transcode the CAVLC stream 327 into a second
CAVLC stream 337. The third transcoder 340 is a post-pro-
cessing transcoder configured to transcode the second
CAVLC stream 337 into the H.264 CABAC stream 350.

Turning to the individual elements of FIG. 3, the first
transcoder 320 comprises a CABAC decoder 322, a picture
processing unit 324 and a CAVLC encoder 326. The CABAC
decoder 322 receives the compressed H.264 stream 310 in
CABAC video format as its input stream. The CABAC
decoder 322 decodes the input stream 310 using a CABAC
decoding algorithm, such as the binary arithmetic decoding
known to those of ordinary skills in the art. The decoded
H.264 video stream comprises multiple intra and inter video
frames. The picture processing unit 324 receives the video
frames of the decoded H.264 CABAC stream and processes
these video frames. In one embodiment, the picture process-
ing unit 324 translates the received video frames into format
that the CAVLC encoder 326 can use as input. The picture
processing unit 324 sends the processed video frames to the
CAVLC encoder 326. The CAVLC encoder 326 encodes the
processed video frames into a CAVLC stream 327 (i.e., a
bitstream in CAVLC video format) using a CAVLC encoding
algorithm, such as structured Exp-Golomb encoding. The
first transcoder 320 stores the CAVLC stream 327 in the
memory 206A for further processing.

The second transcoder 330 comprises a CAVLC decoder
332, apicture processing unit 334 and a CAVL.C encoder 336.
The second transcoder 330 retrieves the CAVLC stream 327
from the memory 206 A and sends it to the CAVLC decoder
332. The CAVLC decoder 332 decodes the CAVLC stream
327 using a CAVLC decoding algorithm, such as Exp-
Golomb decoding. The decoded CAVLC stream comprises
multiple intra and inter video frames. The picture processing
unit 334 receives the intra/inter video frames of the decoded
CAVLC stream 327 and processes these video frames. In one
embodiment, the video processing unit 334 performs video
processing including change of bit-rate, frame-rate and/or
spatial resolution. The picture processing unit 334 sends the
processed video frames to the CAVLC encoder 336. The
CAVLC encoder 336 encodes the processed video frames into

US 9,083,976 B2

7
another CAVLC stream 337. The second transcoder 330
stores the CAVLC stream 337 in the memory 206B for further
processing.

The third transcoder 340 comprises a CAVLC decoder 342,
apicture processing unit 344 and a CAVLC encoder 346. The
third transcoder 340 retrieves the CAVLC stream 337 from
the memory 206B and sends it to the CAVL.C decoder 342.
The CAVLC decoder 342 decodes the CAVLC stream 337.
The decoded CAVLC stream comprises multiple intra and
inter video frames. The picture processing unit 344 receives
the intra/inter video frames of the decoded CAVLC stream
337 and processes these video frames. In one embodiment,
the picture processing unit 344 translates the received video
frames into a format suitable for the CABAC encoder 346.
The picture processing unit 344 sends the processed video
frames to the CABAC encoder 346. The CABAC encoder 346
encodes the processed video frames into a H.264 CABAC
stream 350, which is a transcoded video stream of the input
stream 310, the H.264 CABAC stream. The third transcoder
340 can output the transcoded H.264 CABAC stream 350 to
a next video processing unit (e.g., a video player), or store the
H.264 CABAC stream 350 in a storage device.

As noted, the CAVLC decoder 332 of the second
transcoder 330 is a decoder corresponding to (or comple-
menting) the CAVLC encoder 326 of the first transcoder 320.
The CAVLC decoder 332 is configured to decode the bit-
stream encoded by the CAVLC encoder 326. Similarly, the
CAVLC decoder 342 of the third transcoder 340 is a decoder
corresponding to the CAVLC encoder 336 of the second
transcoder 330. The CAVLC decoder 342 is configured to
decode the bitstream encoded by the CAVL.C encoder 336.

As illustrate in FIG. 3, an input video stream 310 in a
complex video format (e.g., H.264 CABAC) is first pre-pro-
cessed by the first transcoder 320 and gets stored into the
memory 206A. Pre-processing the input video stream 310 by
the first transcoder 320 and storing into the memory 206A
smooth out CABAC decoding jitters. It allows designing the
CABAC decoder 322 for average bit-rate instead of peak
bit-rate. Accordingly, the second transcoder 330 runs more
efficiently and quickly given the CABAC decoder 322. As a
result, the average video processing performance provided by
pre-processing an input video stream is better than a worst
scenario video processing performance without the pre-pro-
cessing. Similarly, storing the CAVLC stream 327 into the
memory 2068 and post-processing the CAVLC 327 by the
third transcoder 340 smooth out CABAC encoding jitters. It
allows designing the CABAC encoder 346 for average bit-
rate instead of peak bit-rate. This allows the second
transcoder 320 to run more efficiently and quickly given the
CABAC encoder 346.

FIG. 4 is an example of the video processing system 100
illustrated in FIG. 1 for transcoding a compressed H.264
CABAC stream 410 into a MPEG-2 video stream 440 by
pipelining two transcoders. The exemplary video processing
system in FIG. 4 comprises a first transcoder 420, a second
transcoder 430 and a memory unit 206. The first transcoder
420 couples the second transcoder 430. The first transcoder
420 is a pre-processing transcoder configured to preprocess
the compressed H.264 CABAC stream 410 into a CAVLC
stream 427. The second transcoder 430 is a primary
transcoder configured to transcode the CAVLC stream 427
into the MPEG-2 video stream 440.

Turning to the individual elements of FIG. 4, the first
transcoder 420 comprises a CABAC decoder 422, a picture
processing unit 424 and a CAVLC encoder 426. The CABAC
decoder 422 receives the compressed H.264 stream 410 in
CABAC video format as its input stream. The CABAC

10

15

20

25

30

35

40

45

50

55

60

65

8

decoder 422 decodes the input stream 410 using a CABAC
decoding algorithm, such as the binary arithmetic decoding.
The decoded H.264 video stream comprises multiple intra
and inter video frames. The picture processing unit 424
receives the video frames of the decoded H.264 CABAC
stream and processes these video frames. In one embodiment,
the picture processing unit 424 translates the received video
frames into a format that the CAVLC encoder 426 under-
stands. The picture processing unit 424 sends the processed
video frames to the CAVLC encoder 426. The CAVLC
encoder 426 encodes the processed video frames into a
CAVLC stream 427 using a CAVLC encoding algorithm,
such as structured Exp-Golomb encoding. The first
transcoder 420 stores the CAVLC stream 427 in the memory
206 for further processing.

The second transcoder 430 comprises a CAVLC decoder
432, a picture processing unit 434 and a MPEG-2 video
entropy encoder 436. The CAVL.C decoder 432 is a decoder
corresponding to (or complementing) the CAVLC encoder
426 of the first transcoder 420. The second transcoder 430
retrieves the CAVLC stream 427 from the memory 206 and
sends it to the CAVLC decoder 432. The CAVLC decoder 432
decodes the CAVLC stream 427. The decoded CAVLC
stream comprises multiple intra and inter video frames. The
picture processing unit 434 receives the intra/inter video
frames of the decoded CAVLC stream 427 and processes
these video frames. In one embodiment, the picture process-
ing unit 434 performs video processing including change of
bit-rate, frame-rate and/or spatial resolution. The picture pro-
cessing unit 434 sends the processed video frames to the
MPEG-2 video entropy encoder 436. The MPEG-2 video
entropy encoder 436 encodes the processed video frames into
a transcoded MPEG-2 video stream 440. The second
transcoder 430 can output the transcoded MPEG-2 video
stream 440 to a next video processing unit (e.g., a video
player), or store the MPEG-2 stream 440 in a storage device.

As illustrate in FIG. 4, an input video stream 410 in a
complex video format (e.g., H.264 CABAC) is first pre-pro-
cessed by the first transcoder 420. Pre-processing the input
video stream 110 and storing the pre-processed input stream
410 into the memory 206 by the first transcoder 420 allows
the second transcoder 430 to more efficiently and quickly
transcode the input video stream 410. Pre-processing the
input stream 410 by the first transcoder 420 and buffering the
pre-processed input stream with the memory 206 allows for
configuring the CABAC decoder 422 for average bit-rate
rather than peak bit-rate. Thus, the second transcoder 430
runs more efficiently and quickly given the CABAC decoder
422.

FIG. 5 is an example of the video processing system 100
illustrated in FIG. 1 for transcoding a compressed MPEG-2
video stream 510 into a H.264 CABAC stream 540 by pipe-
lining two transcoders. The exemplary video processing sys-
tem in FIG. 5 comprises a first transcoder 520, a second
transcoder 530 and a memory unit 206. The first transcoder
520 couples the second transcoder 530. The first transcoder
520 is a pre-processing transcoder configured to preprocess
the compressed MPEG-2 stream 510 into a CAVLC stream
527. The second transcoder 530 is a primary transcoder con-
figured to transcode the CAVLC stream 527 into the H.264
CABAC video stream 540.

Turning to the individual elements of FIG. 5, the first
transcoder 520 comprises a MPEG-2 entropy decoder 522, a
picture processing unit 524 and a CAVLC encoder 526. The
MPEG-2 entropy decoder 522 receives the compressed
MPEG-2 video stream 510 as its input stream. The MPEG-2
entropy decoder 522 decodes the input stream 510 using a

US 9,083,976 B2

9

MPEG-2 entropy decoding algorithm. The decoded MPEG-2
video stream comprises multiple intra and inter video frames.
The picture processing unit 524 receives the video frames of
the decoded MPEG-2 stream and processes these video
frames. In one embodiment, the picture processing unit 524
performs video processing functions such as scaling and/or
motion estimation on the decoded MPEG-2 frames. The pic-
ture processing unit 524 sends the processed video frames to
the CAVLC encoder 526. The CAVLC encoder 526 encodes
the processed video frames into a CAVLC stream 527. The
first transcoder 520 stores the CAVLC stream 527 in the
memory 206 for further processing.

The second transcoder 530 comprises a CAVLC decoder
532, apicture processing unit 534 and a CABAC encoder 536.
The CAVLC decoder 532 is a decoder corresponding to (or
complementing) the CAVLC encoder 526 of the first
transcoder 520. The second transcoder 530 retrieves the
CAVLC stream 527 from the memory 206 and sends it to the
CAVLC decoder 532. The CAVLC decoder 532 decodes the
CAVLC stream 527. The decoded CAVLC stream comprises
multiple intra and inter video frames. The picture processing
unit 534 receives the intra/inter video frames of the decoded
CAVLC stream 527 and processes these video frames. In one
embodiment, the picture processing unit 534 translates the
received video frames into a format that the CABAC encoder
536 understands. The picture processing unit 534 sends the
processed video frames to the CABAC encoder 536. The
CABAC encoder 536 encodes the processed video frames
into a transcoded H.264 CABAC stream 540. The second
transcoder 530 can output the transcoded H.264 CABAC
stream 540 to a next video processing unit (e.g., a video
player), or store the H.264 CABAC stream 540 in a storage
device.

As illustrate in FIG. 5, the first transcoder 520 transcodes
the input video stream 510 to a CAVLC stream 527, and stores
it into the memory 206. The second transcoder 530 reads the
CAVLC stream 527 from the memory 206 and transcodes it
into the CABAC stream 540. The memory 206 smoothes out
the CABAC encoder 536 processing, and allows the first
transcoder 520 to run more efficiently and quickly. In addi-
tion, the CABAC encoder 536 can be configured for average
bit-rate instead of peak bit-rate. Thus, the first transcoder 520
runs more efficiently and quickly given the CABAC encoder
536.

FIG. 6 is an example of the video processing system 110
illustrated in FIG. 1 for transcoding a compressed H.264
CABAC stream 610 into a CAVLC stream 640 by pipelining
two transcoders. The exemplary video processing system in
FIG. 5 comprises a first transcoder 620, a second transcoder
630 and a memory unit 206. The first transcoder 620 couples
the second transcoder 630. The first transcoder 620 is a pre-
processing transcoder configured to preprocess the com-
pressed H.264 CABAC stream 610 into a CAVLC stream
627. The second transcoder 630 is a primary transcoder con-
figured to transcode the CAVLC stream 627 into the CAVL.C
stream 640.

Turning to the individual elements of FIG. 6, the first
transcoder 620 comprises a CABAC decoder 622, a picture
processing unit 624 and a CAVLC encoder 626. The CABAC
decoder 622 receives the compressed H.264 CABAC stream
610 as its input stream. The CABAC decoder 622 decodes the
input stream 610 using a CABAC decoding algorithm known
to those of ordinary skills in the art. The decoded H.264
CABAC stream comprises multiple intra and inter video
frames. The picture processing unit 624 receives the video
frames of the decoded H.264 CABAC stream and processes
these video frames. In one embodiment, the picture process-

20

25

30

40

45

50

55

10

ing unit 624 translates received video frames into a format
that can be used by the CAVLC encoder 626. The picture
processing unit 624 sends the processed video frames to the
CAVLC encoder 626. The CAVLC encoder 626 encodes the
processed video frames into a CAVLC stream 627. The first
transcoder 620 stores the CAVLC stream 627 in the memory
206 for further processing.

The second transcoder 630 comprises a CAVLC decoder
632, apicture processing unit 634 and a CAVLC encoder 636.
The CAVLC decoder 632 is a decoder corresponding to (or
complementing) the CAVLC encoder 626 of the first
transcoder 620. The second transcoder 630 retrieves the
CAVLC stream 627 from the memory 206 and sends it to the
CAVLC decoder 632. The CAVLC decoder 632 decodes the
CAVLC stream 627. The decoded CAVLC stream comprises
multiple intra and inter video frames. The picture processing
unit 634 receives the intra/inter video frames of the decoded
CAVLC stream 627 and processes these video frames. In one
embodiment, the picture processing unit 634 performs video
processing functions such as scaling and/or motion estima-
tion on the decoded CAVLC stream 627. The picture process-
ing unit 634 sends the processed video frames to the CAVL.C
encoder 636. The CAVLC encoder 636 encodes the processed
video frames into a transcoded CAVLC stream 640. The
second transcoder 630 can output the transcoded CAVLC
stream 640 to a next video processing unit (e.g., a video
player), or store the CAVL.C stream 640 in a storage device.

As illustrate in FIG. 6, an input video stream 610 in a
relatively complex video format (e.g., CABAC) is first pre-
processed by the first transcoder 620. The first transcoder 620
pre-processes the CABAC stream 610 into the CAVLC
stream 627 and stores it in the memory 206. Pre-processing
the input stream 610 and storing it into the memory 206
smooth out CABAC decoding jitters. The CABAC decoder
622 accordingly is configured for average bit-rate instead of
peak bit-rate. Therefore, the second transcoder 630 runs more
efficiently and quickly given the CABAC decoder 622.

FIG. 7 is an example of the video processing system 100
illustrated in FIG. 1 for transcoding a compressed CAVL.C
stream 710 into a H.264 CABAC stream 740 by pipelining
two transcoders. The exemplary video processing system in
FIG. 7 comprises a first transcoder 720, a second transcoder
730 and a memory unit 206. The first transcoder 720 couples
the second transcoder 730. The first transcoder 720 is a pre-
processing transcoder configured to preprocess the com-
pressed CAVLC stream 710 into another CAVLC stream 727.
The second transcoder 730 is a primary transcoder configured
to transcode the CAVLC stream 727 into the H.264 CABAC
stream 740.

Turning to the individual elements of FIG. 7, the first
transcoder 720 comprises a CABAC decoder 722, a picture
processing unit 724 and a CAVLC encoder 726. The CABAC
decoder 722 receives the compressed CAVL.C stream 710 as
its input stream. The CAVLC decoder 722 decodes the input
stream 710 using a CAVLC decoding algorithm known to
those of ordinary skills in the art. The decoded CAVLC video
stream comprises multiple intra and inter video frames. The
picture processing unit 724 receives the video frames of the
decoded CAVLC stream and processes these video frames. In
one embodiment, the picture processing unit 724 performs
video processing including change of bit-rate, frame-rate
and/or spatial resolution. The picture processing unit 724
sends the processed video frames to the CAVLC encoder 726.
The CAVLC encoder 726 encodes the processed video frames
into a second CAVLC stream 727. The first transcoder 720
stores the CAVLC stream 727 in the memory 206 for further
processing.

US 9,083,976 B2

11

The second transcoder 730 comprises a CAVLC decoder
732, apicture processing unit 734 and a CAVL.C encoder 736.
The CAVLC decoder 732 is a decoder corresponding to the
CAVLC encoder 727 of the first transcoder 720. The second
transcoder 730 retrieves the CAVLC stream 727 from the
memory 206 and sends it to the CAVLC decoder 732. The
CAVLC decoder 732 decodes the CAVLC stream 727. The
decoded CAVLC stream comprises multiple intra and inter
video frames. The picture processing unit 734 receives the
intra/inter video frames of the decoded CAVLC stream 727
and processes these video frames. In one embodiment, the
picture processing unit 734 translates received video frames
into a format that can be used by the CABAC encoder 736.
The picture processing unit 734 sends the processed video
frames to the CABAC encoder 736. The CABAC encoder 736
encodes the processed video frames into a transcoded H.264
CABAC stream 740. The second transcoder 730 can output
the transcoded H.264 CABAC stream 740 to a next video
processing unit (e.g., a video player), or store the H.264
CABAC stream 740 in a storage device.

As illustrate in FIG. 7, the first transcoder 720 transcodes
the input video stream 710 into the CAVLC stream 727, and
stores it into the memory 206. The second transcoder 730
reads the CAVLC stream 527 from the memory 206 and
transcodes it into the CABAC stream 740. The memory 206
smoothes out the CABAC encoder 736 processing jitter, and
allows the first transcoder 720 to run more efficiently and
quickly. In particular, the CABAC encoder 736 can be con-
figured for average bit-rate instead of peak bit-rate. This
allows the first transcoder 720 to run more efficiently and
quickly given the CABAC encoder 726.

Example Video Processing System Processing Flow

FIG. 8 is a flow chart illustrating steps performed by the
video processing system 110 to transcode a compressed video
stream by pipelining multiple transcoders according to one
embodiment. Initially, the video processing system 100
receives 810 an input video stream in its native video format.
The video processing system 100 uses a first transcoder to
transcode 820 the input video stream into a first bitstream in
a first video format. A second transcoder of the video pro-
cessing system 100 receives 830 the first bitstream in the first
video format and transcodes 840 the first bitstream into a
second bitstream in a second video format. The video pro-
cessing system 100 optionally uses a third transcoder to fur-
ther process the input video stream. For example, the third
transcoder receives 850 the second bitstream in the second
video format and transcodes 860 the second bitstream into a
third bitstream in a third video format. The video processing
system 100 further outputs 870 the transcoded bitstream.
Responsive to having two transcoders, the video processing
system 100 directly outputs 870 the bitstream after the bit-
stream is transcoded 840 by the second transcoder.

As noted above, the first transcoder of the video processing
system 100 is a pre-processing transcoder (e.g., transcoder
120, 320, 420, 520, 620 or 720) configured to preprocess the
input video stream into the first video stream in the first video
format. The second transcoder (e.g., transcoder 140, 330,
430, 530, 630 or 730) is a primary transcoder configured to
transcode the first video stream from the first transcoder into
the second video stream in the second video format. Pre-
processing the input video stream by the first transcoder
allows the second transcoder to more efficiently and quickly
transcode the input video stream into the second video stream
in the second video format. The third transcoder comprises a
post-processing transcoder that is configured to further
transcode the second video stream from the second
transcoder into a third video stream in a third video format.

10

15

20

25

30

35

40

45

50

55

60

65

12

Post-processing the video stream from the second transcoder
further improves processing efficiency and speed and also
increases throughout of coding processing.

Enhanced Entropy Coding

High performance H.264/AVC CABAC entropy coding
can be challenging in a conventional video coding system due
to the inherent dependencies in the coding process. Taking a
CABAC entropy decoding as an example, conceptually, a
CABAC decoding process can be divided into two steps. The
first step is to decode an input video stream into multiple
“bins” which are binary information of the decoded input
stream. A second step is to combine the decoded bins into
syntax elements.

Starting with the first step of CABAC decoding, it is an
arithmetic decoding process that is serial in nature due to the
inherent dependency within the decoding process. The
dependency within the arithmetic decoding can make it hard
to take advantage of the parallel capability of hardware, and
decoding performance is generally below 1 bin per cycle. On
the other hand, there is no dependency between the bins
within a syntax element during the second step of CABAC
decoding. Decoding bins within a syntax element can be
implemented in parallel hardware, and multiple bins within a
syntax element can be decoded in a single cycle. The mis-
match of the performance speed of the arithmetic decoding
and syntax decoding in a conventional video system degrades
the video processing performance, especially for real-time
video processing applications.

Another factor that is often ignored by a conventional video
system is the highly statistical nature of the arithmetic decod-
ing process. In a typical video stream, out of all the coded
pictures/frames, only a small number of pictures (<5-7%
typically) are very large, which are typically intra coded
pictures (e.g., I pictures). The remaining pictures are rela-
tively small in size, and are typically predictive coded pic-
tures (B and P pictures). For example, for a typical video
stream, for every 15 to 30 pictures there is one I picture.
However, a common constraint for real time decoding is that
every picture needs to be decoded in the same amount of time.
For the arithmetic decoding process its performance require-
ment is high for the large I pictures because there are a lot of
bins to decode than the rest of other types of pictures, while its
performance requirement is quite low for the non-I pictures. It
is common to have a macroblock in an I picture to have more
than 1000 bins in a typical broadcasting HD stream at 10
Mbps. That would require more than 1000 cycles to decode.
However, for a typical HD stream at 10 Mbps, on average,
each macroblock is only 40 bits, which translates to around
50-60 bins. Even at 40 Mbps, which is the highest bit-rate
practically needed, it’s less than 240 bins per macroblock on
average.

On the other hand, the syntax decoding process (also refers
to as “de-binarization process”) can handle a worst case per-
formance in hardware implement. Assuming one cycle per
syntax element, there are at most around 400 syntax elements
in a macroblock. But in a typical video stream, the number of
syntax elements per macroblock is less than 200. Therefore,
the worst case macroblock de-binarization requires less than
200 cycles for processing. There is a mismatch between the
worst case performances of arithmetic decoding and de-bina-
rization for decoding a macroblock. However, the average
performance of the arithmetic decoding is not worse than the
worst case de-binarization process.

Based on the observations described above, one embodi-
ment of the video processing system enhances the entropy
coding (e.g., entropy decoding and entropy encoding) perfor-
mance using a memory buffer to smooth out the slow perfor-

US 9,083,976 B2

13

mance of the arithmetic decoding and to match performance
of the arithmetic decoding with the performance of the de-
binarization process. FIG. 9 is an example of the video pro-
cessing system with an enhanced entropy decoder 920 and an
enhanced entropy encoder 930 according to one embodiment.
The entropy decoder 920 receives an input video stream 910
and decodes the input video stream 910 into an intermediate
output stream. The entropy encoder 930 receives the interme-
diate out stream and encodes it into an output video stream
940 for further processing, such as transcoding and real-time
streaming. The enhanced entropy decoder 920 and entropy
encoder 930 can be used with the first, second and/or third
transcoders illustrated in FIG. 1.

The input video stream 910 has multiple video coding
parameters associated with it, such as bit-rate, frame-rate,
target performance measurement and frame type (e.g., |
frame, B frame or P frame). In one embodiment, the target
performance is measured by the frame-rate of the input video
stream (e.g., 30 frames/second), and the input video stream
that is suitable for context-adaptive binary arithmetic coding
(e.g., CABAC of H.264/AVC video stream).

In one embodiment, the entropy decoder 920 includes an
arithmetic decoding module 922, a memory management
module 924, a syntax decoding module 926 and a memory
buffer 928. The entropy decoder 920 is configured to divide
the entropy decoding process of the input video stream 910
into two stages: an arithmetic decoding stage and a syntax
decoding stage, and uses the memory buffer 928 to accelerate
the decoding performances the arithmetic decoding module
924 and the syntax decoding module 926.

The arithmetic decoding module 920 is configured to
receive the input video stream 910 and decodes the input
video stream 910 into a binary stream grouped into one or
more bins of the decoded input video stream. Any binary
arithmetic decoding scheme known to those of ordinary skills
in the art, such as a CABAC decoding, can be used by the
arithmetic decoding module 920. The bins of the decoded
input video stream 910 are written into the memory buffer
928.

Because of the dependency within the arithmetic decoding,
the arithmetic decoding module 922 has uneven decoding
performance depending on the video coding parameters of
video frames of the input video stream 922. For example, the
arithmetic decoding module 922 has a slow decoding perfor-
mance for an intra frame which has complex video content,
e.g., high motion in a fast moving football match video. For a
predicted video frame with simple video content, e.g., a B
frame with a static talking head of a presentation video, the
arithmetic decoding module 922 is fast in decoding the video
frame. The uneven decoding performance of the arithmetic
decoding module 922 results in the bins of the decoded input
video stream 910 being written into the memory buffer at
different time intervals and different speeds.

The syntax decoding module 926 reads the bins of the
arithmetically decoded input video stream 910 from the
memory buffer 928 and combines the bins into one or more
syntax elements of the input video stream 910. In one
embodiment, the syntax decoding module 926 decodes mul-
tiple bins within a syntax element in a single cycle because
there is no dependency between the bins within the syntax
element. The syntax decoding module 926 is configured to
periodically read bins from the memory buffer 928 at a pre-
determined time intervals. In other words, the syntax decod-
ing module 926 can read the bins from the memory buffer at
a constant speed, e.g., read all the bins within a syntax ele-
ment every cycle. The syntax decoding module 926 outputs a
bitstream of variable length-coded syntax elements of the

10

15

20

25

30

35

40

45

50

55

60

65

14

input video stream 910, such as block types, motion vectors
and quantized coefficients, for further processing.

The memory management module 924 is configured to
accelerate the decoding performances of the arithmetic
decoding module 924 and the syntax decoding module 926
using a memory buffer between the two decoding modules. In
one embodiment, the memory management module 924
smoothes out the mismatch in decoding performances of the
two decoding modules (i.e., 922 and 926) by monitoring the
fullness of the memory buffer 928 and by controlling when
the syntax decoding module 926 can read the bins in the
memory buffer 928.

To monitor the buffer fullness of the memory buffer 928,
the memory management module 924 is configured to
observe the decoding rate of the arithmetic decoding module
922. The decoding rate of the arithmetic decoding module
922 varies among the video frames of the input video stream
910 depending on the type of frame and complexity of the
video content in the frame. The memory management module
924 compares the observed decoding rate of the arithmetic
decoding module 922 with a predetermined picture rate. The
picture rate for the entropy decoding ofthe input video stream
910 is a configurable coding parameter determined by one or
more video coding parameters of the input video stream 910
such that the decoding performance of the entropy decoder
920 can support the target performance requirement of the
input video stream 910. Based on the comparison of the
observed decoding rate of the arithmetic decoding module
922 and the picture rate, the memory management module
924 determines whether the memory buffer 928 is sufficiently
full, e.g., the decoding rate is larger than the picture rate. If the
memory buffer 928 is sufficiently full, the memory manage-
ment module 928 notifies the syntax decoding module 926 to
read bins of arithmetically decoded input video stream 910
from the memory buffer 928.

The memory management module 924 is further config-
ured to initialize the memory buffer 928. The initialization of
the memory buffer 928 includes determining a size of the
memory buffer based on one or more video coding param-
eters of the input video stream 910, such as the length of the
video stream, number of frames in the input video stream.
Other embodiments of initialization may include other opera-
tions, such as analyzing video content complexity and deter-
mining the memory buffer size based on the video content
complexity analysis. The initialization of the memory buffer
928 further includes determining an initial delay for receiving
the bins of the arithmetically decoded input video stream and
for reading the bins for syntax decoding. The initial delay can
be determined based on one or more video coding parameters
and/or processing speed of computing devices configured to
implement the functions of the arithmetic decoding module
922 and the syntax decoding module 926.

By dividing the entropy decoding into two stages and using
the memory buffer 928 between the arithmetic decoding
module 922 and the syntax decoding module 926, the
memory management module 924 manages to avoid starving
the fast syntax decoding module 926 responsive to the slow
arithmetic decoding module 922. As a result, the average
performance of the arithmetic decoding of the input video
stream 910 supports the target performance of the input video
stream 910, and the worse case performance of the arithmetic
decoding and the worst case de-binarization process are com-
pensated to support the target performance of the input video
stream 910.

In one embodiment, the video coding system includes an
entropy encoder 930 to entropy encode the decoded video
stream by the entropy decoder 920. The entropy encoder 930

US 9,083,976 B2

15

includes a syntax encoding module 932, a memory manage-
ment module 934, an arithmetic encoding module 936 and a
memory buffer 938. The entropy encoder 930 is configured to
perform entropy encoding corresponding to the entropy
decoding described above. Specifically, the syntax encoding
module 932 receives a videos stream decoded by the entropy
decoder 920 and encodes the syntax elements of the decoded
stream into multiple bins. The arithmetic encoding module
936 is configured to read bins of encoded syntax elements into
bins of arithmetically encoded video stream.

The mismatch of entropy coding performances also exists
in the entropy encoding process as its corresponding entropy
decoding process. The entropy encoder 930 uses a memory
buffer 938 to smooth out the mismatch similarly as for the
decoding process. In the embodiment illustrated in FIG. 9, the
memory management module 934 and the memory buffer
938 of the entropy encoder 930 are shown as separate entities
for simplified illustration. Other embodiments may share the
memory management module and memory buffer with the
entropy decoder 920.

FIG. 10 is an example of the enhanced entropy decoder
1000 using a decoding buffer 1020 to accelerate the perfor-
mances of arithmetic decoding and syntax decoding accord-
ing to one embodiment. In the example illustrated in FIG. 10,
the input stream is a CABAC bit stream 1002. The enhanced
entropy decoder 1000 has an arithmetic decoding module
1010, a syntax decoding module 1030, and a decoding buffer
1020 connecting the two decoding modules. The arithmetic
decoding module 1010 is configured to receive the CABAC
bit stream 1002 and decodes it into multiple input bins 1012.
The input bins 1012 are stored in the decoding buffer 1020.
The syntax decoding module 1030 reads the bins of the
decoded CABAC bit stream (i.e., output bins 1014) from the
decoding buffer 1020 and decodes the output bins 1014 into
multiple syntax elements 1004 of the CABAC bit stream.

The decoding buffer 1020 is managed by a memory man-
agement module, such as the memory management module
924 described with reference to FIG. 9. The memory man-
agement modules initializes the decoding buffer 1020 by
determining its size and initial delay based on one or more
video coding parameters (e.g., length of video) of the
CABAC bit stream 1002. The memory management module
monitors the buffer fullness based on the decoding perfor-
mance of the arithmetic decoding module 1010. Responsive
to the decoding buffer 1020 has predetermined number of
decoded bins, such as the number of decoded bins can support
a syntax element decoding in a single cycle, the memory
management module notifies the syntax decoding module
1030 to read the output bins 1014 for syntax decoding.

FIG. 11 is a flow chart illustrating steps performed by an
enhanced entropy decoder 920 illustrated in FIG. 9 according
to one embodiment. Initially, the entropy decoder 920
receives 1102 an input video stream, such as a CABAC bit
stream, for decoding. The memory management module of
the entropy decoder 920 initializes 1104 a decoding buffer,
e.g., the buffer 928 in FIG. 9. The initialization may include
determining a size and initial delay for the decoding buffer.
The entropy decoder 920 decodes 1106 the input video stream
into multiple bins by an arithmetic decoder, and stores 1108
the arithmetically decoded video stream in units of bins in the
decoding bufter. The entropy decoder 920 monitors 1110 the
decoding buffer for buffer fullness, e.g., by comparing the
buffer fullness with a threshold value. In response to the
decoding buffer having enough bins to support syntax decod-
ing, the entropy decoder 920 decodes 1112 the arithmetically
decoded input video stream into multiple syntax elements.
Responsive to the decoding buffer not having enough arith-

10

20

25

30

35

40

45

16

metically decoded input stream data, the entropy decoder 920
continues the arithmetic decoding of the input video stream
(e.g., going back to step 1106). Similar operations apply to an
enhanced entropy encoder.

By dividing the entropy decoding into two stages and using
a decoding memory buffer between arithmetic decoding and
syntax decoding, the enhanced entropy decoder advanta-
geously avoids starving a fast syntax decoding responsive to
a slow arithmetic decoding. As a result, the average perfor-
mance of the arithmetic decoding of an input video stream
supports the target performance of the input video stream for
real time video processing. Similar advantages apply to the
enhanced entropy encoder described above.

Additional Configuration Considerations

Some portions of above description describe the embodi-
ments in terms of algorithmic descriptions and processes,
e.g., as with the description within Figures XX. These opera-
tions (e.g., the processes described above), while described
functionally, computationally, or logically, are understood to
be implemented by computer programs or equivalent electri-
cal circuits, microcode, or the like. The computer programs
are typically embedded as instructions that can be stored on a
tangible computer readable storage medium (e.g., flash drive
disk, or memory) and are executable by a processor. Further-
more, it has also proven convenient at times, to refer to these
arrangements of operations as modules, without loss of gen-
erality. The described operations and their associated mod-
ules may be embodied in software, firmware, hardware, or
any combinations thereof.

As used herein any reference to “one embodiment” or “an
embodiment” means that a particular element, feature, struc-
ture, or characteristic described in connection with the
embodiment is included in at least one embodiment. The
appearances of the phrase “in one embodiment” in various
places in the specification are not necessarily all referring to
the same embodiment.

Some embodiments may be described using the expression
“coupled” and “connected” along with their derivatives. For
example, some embodiments may be described using the
term “connected” to indicate that two or more elements are in
direct physical or electrical contact with each other. In
another example, some embodiments may be described using
the term “coupled” to indicate that two or more elements are
in direct physical or electrical contact. The term “coupled,”
however, may also mean that two or more elements are not in
direct contact with each other, but yet still co-operate or
interact with each other. The embodiments are not limited in
this context.

As used herein, the terms “comprises,” “comprising,”
“includes,” “including,” “has,” “having” or any other varia-
tion thereof, are intended to cover a non-exclusive inclusion.
For example, a process, method, article, or apparatus that
comprises a list of elements is not necessarily limited to only
those elements but may include other elements not expressly
listed or inherent to such process, method, article, or appara-
tus. Further, unless expressly stated to the contrary, “or”
refers to an inclusive or and not to an exclusive or. For
example, a condition A or B is satisfied by any one of the
following: A is true (or present) and B is false (or not present),
A is false (or not present) and B is true (or present), and both
A and B are true (or present).

In addition, use of the “a” or “an” are employed to describe
elements and components of the embodiments herein. This is
done merely for convenience and to give a general sense of the
invention. This description should be read to include one or at
least one and the singular also includes the plural unless it is
obvious that it is meant otherwise.

US 9,083,976 B2

17

Upon reading this disclosure, those of skill in the art will
appreciate still additional alternative structural and functional
designs for a system and a process for improving transcoding
efficiency, speed and for increasing throughout of coding
processing through the disclosed principles herein. Thus,
while particular embodiments and applications have been
illustrated and described, it is to be understood that the dis-
closed embodiments are not limited to the precise construc-
tion and components disclosed herein. Various modifications,
changes and variations, which will be apparent to those
skilled in the art, may be made in the arrangement, operation
and details of the method and apparatus disclosed herein
without departing from the spirit and scope defined in the
appended claims.

What is claimed is:

1. A computer-implemented method for decoding an input
video stream in real time, comprising:

receiving an input video stream, the input video stream

having a plurality of video frames, video coding param-
eters and a target performance rate;

initializing a memory buffer for storing arithmetically

decoded video data of the input video stream;
arithmetically decoding the input video stream, the arith-
metically decoded input video stream represented by a
plurality of bins which are binary information of the
arithmetically decoded input video stream;

storing the plurality of bins of the arithmetically decoded

input video stream in the memory buffer;

identifying arithmetic decoding rate of the input video

stream, the identified arithmetic decoding rate varying
depending on video content of the plurality of video
frames of the input video stream;
comparing the identified arithmetic decoding rate with a
picture rate, the picture rate being determined by one or
more video coding parameters of the input video stream;

determining buffer fullness of the memory buffer based the
comparison of the identified arithmetic decoding rate
and the picture rate;

responsive to the buffer fullness of the memory buffer

exceeding a threshold value, retrieving the plurality of
bins stored in the memory buffer; and

decoding the plurality of bins into bits of syntax informa-

tion of the arithmetically decoded input video stream.

2. The method of claim 1, the input video stream is a video
stream that is suitable for context-adaptive binary arithmetic
coding.

3. The method of claim 2, wherein the input video stream is
a context-adaptive binary arithmetic coding (CABAC) video
stream.

4. The method of claim 1, wherein the video coding param-
eters of the input video stream include a bit-rate, a frame rate
and a frame type for each video frame of the input video
stream, and the target performance rate is the frame rate of the
input video stream.

5. The method of claim 1, wherein initializing the memory
buffer comprises:

determining a size of the memory buffer based on at leastin

part of the video coding parameters of the input video
stream; and

determining an initial delay for receiving the plurality of

bins of the arithmetically decoded input video stream
and for retrieving the plurality of bins for syntax decod-
ing.

6. The method of claim 1, wherein decoding the plurality of
bins into bits of syntax information comprises:

retrieving bins of arithmetically decoded input video

stream; and

20

25

30

35

40

45

50

55

60

65

18

de-binarizing the retrieved bins of arithmetically decoded
input video stream into bits of syntax elements, wherein
performance of de-binarizing supports the target perfor-
mance rate.
7. The method of claim 1, wherein decoding the plurality of
bins into bits of syntax information of the arithmetically
decoded input video stream comprises:
retrieving the plurality of bins of arithmetically decoded
input video stream from the memory buffer; and

combining the plurality of bins of arithmetically decoded
input video stream into one or more syntax elements of
the input video stream.

8. A computer-implemented method for encoding an input
video stream in real time, comprising:

receiving the input video stream, the input video stream

having a plurality of syntax elements of the input video
stream;

initializing a memory buffer associated with the encoding;

encoding the plurality of syntax element into a plurality of

bins, the plurality of bins containing binary information
of syntax encoded input video stream;

storing the plurality of bins of the syntax encoded input

video stream in the memory buffer;
identifying syntax encoding rate of the input video stream;
comparing the identified syntax encoding rate with a pic-
ture rate, the picture rate being determined by one or
more video coding parameters of the input video stream;

determining buffer fullness of the memory buffer based the
comparison of the identified syntax encoding rate and
the picture rate;

responsive to the buffer fullness of the memory buffer

exceeding a threshold value, retrieving the plurality of
bins stored in the memory buffer; and

arithmetically encoding the plurality of bins into an output

video stream.

9. A non-transitory computer-readable storage medium
comprising instructions executable by one or more proces-
sors for processing an input video stream in real time, the
instructions when executed cause the one or more processors
to:

receive an input video stream, the input video stream hav-

ing a plurality of video frames, video coding parameters
and a target performance rate;

initialize a memory buffer for storing arithmetically

decoded video data of the input video stream;
arithmetically decode the input video stream, the arith-
metically decoded input video stream represented by a
plurality of bins which are binary information of the
arithmetically decoded input video stream;

store the plurality of bins of the arithmetically decoded

input video stream in the memory buffer;

identify arithmetic decoding rate of the input video stream,

the identified arithmetic decoding rate varying depend-
ing on video content of the plurality of video frames of
the input video stream;
compare the identified arithmetic decoding rate with a
picture rate, the picture rate being determined by one or
more video coding parameters of the input video stream;

determine buffer fullness of the memory buffer based the
comparison of the identified arithmetic decoding rate
and the picture rate;

responsive to the buffer fullness of the memory buffer

exceeding a threshold value, retrieve the plurality of bins
stored in the memory bufter; and

decode the plurality of bins into bits of syntax information

of the arithmetically decoded input video stream.

US 9,083,976 B2

19

10. The computer-readable storage medium of claim 9, the
input video stream is a video stream that is suitable for con-
text-adaptive binary arithmetic coding.

11. The computer-readable storage medium of claim 10,
wherein the input video stream is a context-adaptive binary
arithmetic coding (CABAC) video stream.

12. The computer-readable storage medium of claim 9,
wherein the video coding parameters of the input video
stream include a bit-rate, a frame rate and a frame type for
each video frame of the input video stream, and the target
performance rate is the frame rate of the input video stream.

13. The computer-readable storage medium of claim 9,
further comprising instructions that when executed by the one
or more processors cause the one or more processors to:

determine a size of the memory buffer based on at least in

part of the video coding parameters of the input video
stream; and

determine an initial delay for receiving the plurality of bins

of'the arithmetically decoded input video stream and for
retrieving the plurality of bins for syntax decoding.

14. The computer-readable storage medium of claim 9,
wherein the instructions for decoding the plurality of bins into
bits of syntax information comprise instructions that when
executed by the one or more processors cause the one or more
processors to:

retrieve bins of arithmetically decoded input video stream;

and

de-binarize the retrieved bins of arithmetically decoded

input video stream into bits of syntax elements, wherein
performance of de-binarizing supports the target perfor-
mance rate.
15. The computer-readable storage medium of claim 9,
wherein the instructions for decoding the plurality of bins into
bits of syntax information of the arithmetically decoded input
video stream comprise instructions that when executed by the
one or more processors cause the one or more processors to:
retrieve the plurality of bins of arithmetically decoded
input video stream from the memory buffer; and

combine the plurality of bins of arithmetically decoded
input video stream into one or more syntax elements of
the input video stream.

16. A non-transitory computer-readable storage medium
comprising instructions executable by one or more proces-
sors for encoding an input video stream in real time, the
instructions when executed cause the one or more processors
to:

receive the input video stream, the input video stream

having a plurality of syntax elements of the input video
stream;

initialize a memory buffer associated with the encoding;

encode the plurality of syntax element into a plurality of

bins, the plurality of bins containing binary information
of syntax encoded input video stream;

store the plurality of bins of the syntax encoded input video

stream in the memory buffer;
identify syntax encoding rate of the input video stream;
compare the identified syntax encoding rate with a picture
rate, the picture rate being determined by one or more
video coding parameters of the input video stream;

determine buffer fullness of the memory buffer based the
comparison of the identified syntax encoding rate and
the picture rate;

responsive to the buffer fullness of the memory buffer

exceeding a threshold value, retrieve the plurality of bins
stored in the memory buffer; and

arithmetically encode the plurality of bins into an output

video stream.

25

35

40

45

50

55

65

20

17. A computer system for processing an input video
stream in real time, comprising:
a computer processor;
a non-transitory computer-readable storage medium stor-
ing computer program instructions that when executed
by the computer processor cause the computer processor
to:
receive an input video stream, the input video stream
having a plurality of video frames, video coding
parameters and a target performance rate;

initialize a memory buffer for storing arithmetically
decoded video data of the input video stream;

arithmetically decode the input video stream, the arith-
metically decoded input video stream represented by
aplurality of bins which are binary information of the
arithmetically decoded input video stream;

store the plurality of bins of the arithmetically decoded
input video stream in the memory buffer;

identify arithmetic decoding rate of the input video
stream, the identified arithmetic decoding rate vary-
ing depending on video content of the plurality of
video frames of the input video stream;

compare the identified arithmetic decoding rate with a
picture rate, the picture rate being determined by one
or more video coding parameters of the input video
stream;

determine buffer fullness of the memory bufter based the
comparison of the identified arithmetic decoding rate
and the picture rate;

responsive to the buffer fullness of the memory buffer
exceeding a threshold value, retrieve the plurality of
bins stored in the memory buffer; and

decode the plurality of bins into bits of syntax informa-
tion of the arithmetically decoded input video stream.

18. The system of claim 17, further comprising computer
program instructions that when executed by the computer
processor cause the computer processor to:

determine a size of the memory buffer based on at least in
part of the video coding parameters of the input video
stream; and

determine an initial delay for receiving the plurality of bins
of the arithmetically decoded input video stream and for
retrieving the plurality of bins for syntax decoding.

19. The system of claim 17, wherein the instructions for
decoding the plurality of bins into bits of syntax information
of the arithmetically decoded input video stream comprise
instructions that when executed by the one or more processors
cause the one or more processors to:

retrieve the plurality of bins of arithmetically decoded
input video stream from the memory buffer; and

combine the plurality of bins of arithmetically decoded
input video stream into one or more syntax elements of
the input video stream.

20. A computer system for encoding an input video stream

in real time, comprising:

a computer processor;

a non-transitory computer-readable storage medium stor-
ing computer program instructions that when executed
by the computer processor cause the computer processor
to:
receive the input video stream, the input video stream

having a plurality of syntax elements of the input
video stream;
initialize a memory bufter associated with the encoding;
encode the plurality of syntax element into a plurality of
bins, the plurality of bins containing binary informa-
tion of syntax encoded input video stream;

US 9,083,976 B2

21

store the plurality of bins of the syntax encoded input
video stream in the memory buffer;

identify syntax encoding rate of the input video stream;

compare the identified syntax encoding rate with a pic-
ture rate, the picture rate being determined by one or
more video coding parameters of the input video
stream;

determine buffer fullness of the memory buffer based the
comparison of the identified syntax encoding rate and
the picture rate;

responsive to the buffer fullness of the memory buffer
exceeding a threshold value, retrieve the plurality of
bins stored in the memory buffer; and

arithmetically encode the plurality of bins into an output
video stream.

10

15

22

